Preclinical Development Micelle-Encapsulated Thiostrepton as an Effective Nanomedicine for Inhibiting Tumor Growth and for Suppressing FOXM1 in Human Xenografts

نویسندگان

  • Ming Wang
  • Andrei L. Gartel
چکیده

The thiazole antiobiotic, thiostrepton, has been found to induce cell death in cancer cells through proteasome inhibition. As a proteasome inhibitor, thiostrepton has also been shown to suppress the expression of FOXM1, the oncogenic forkhead transcription factor overexpressed in cancer cells. In this study, we explored the potential in vivo anticancer properties of thiostrepton, delivered through nanoparticle encapsulation to xenograft models of breast and liver cancer. We encapsulated thiostrepton into micelles assembled from amphiphilic lipid-PEG (polyethylene glycol) molecules, where thiostrepton is solubilized within the inner lipid compartment of the micelle. Upon assembly, hydrophobic thiostrepton molecules are solubilized into the lipid component of the micelle shell, formed through the self-assembly of amphipilic lipid-PEG molecules. Maximum accumulation of micelle-thiostrepton nanoparticles (100 nm in diameter, 16 mV in zeta potential) into tumors was found at 4 hours postadministration and was retained for at least 24 hours. Upon continuous treatment, we found that nanoparticle-encapsulated thiostrepton reduced tumor growth rates of MDA-MB-231 and HepG2 cancer xenografts. Furthermore, we show for the first time the in vivo suppression of the oncogenic FOXM1 after treatment with proteasome inhibitors. Immunoblotting and immunohistochemical staining also showed increased apoptosis in the treated tumors, as indicated by cleaved caspase-3 expression. Our data suggest that the thiazole antibiotic/proteasome inhibitor thiostrepton, when formulated into nanoparticles, may be highly suited as a nanomedicine for treating human cancer. Mol Cancer Ther; 10(12); 2287–97. 2011 AACR.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Micelle-encapsulated thiostrepton as an effective nanomedicine for inhibiting tumor growth and for suppressing FOXM1 in human xenografts.

The thiazole antiobiotic, thiostrepton, has been found to induce cell death in cancer cells through proteasome inhibition. As a proteasome inhibitor, thiostrepton has also been shown to suppress the expression of FOXM1, the oncogenic forkhead transcription factor overexpressed in cancer cells. In this study, we explored the potential in vivo anticancer properties of thiostrepton, delivered thro...

متن کامل

Suppression of the Oncogenic Transcription Factor FOXM1 by Proteasome Inhibitors

The oncogenic transcription factor FOXM1 is one of the key regulators of tumorigenesis. We found that FOXM1 upregulates its own transcription and its protein stability depends on its interaction with the chaperone nucleophosmin. We also determined that FOXM1 is negatively regulated by the tumor suppressor p53. We identified the thiazole antibiotics Siomycin A and thiostrepton as inhibitors of t...

متن کامل

Thiazole Antibiotics Siomycin a and Thiostrepton Inhibit the Transcriptional Activity of FOXM1

of FOXM1 (Gartel, 2010, 2012). According to this model, siomycin A, thiostrepton, and other proteasome inhibitors hinder the proteasomal degradation of a negative regulator of FOXM1 (NRFM), which in return directly or indirectly inhibits the activity of FOXM1 as a transcription factor (Gartel, 2011). Because FOXM1 is involved in a positive feedback loop and activates its own transcription (Hala...

متن کامل

The dual inhibitory effect of thiostrepton on FoxM1 and EWS/FLI1 provides a novel therapeutic option for Ewing’s sarcoma

The poor prognosis of Ewing's sarcoma (EWS), together with its high lethal recurrence rate and the side‑effects of current treatments, call for novel targeted therapies with greater curative effectiveness and substantially reduced side‑effects. The oncogenic chimeric protein EWS/FLI1 is the key malignancy driver in most EWSs, regulating numerous target genes, many of which influence cell cycle ...

متن کامل

FOXM1 confers to epithelial-mesenchymal transition, stemness and chemoresistance in epithelial ovarian carcinoma cells

Chemoresistance to anti-cancer drugs substantially reduces survival in epithelial ovarian cancer. In this study, we showed that chemoresistance to cisplatin and paclitaxel induced the epithelial-mesenchymal transition (EMT) and a stem cell phenotype in ovarian cancer cells. Chemoresistance was associated with the downregulation of epithelial markers and the upregulation of mesenchymal markers, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011